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Abstract

Modern crowd counting methods usually employ deep
neural networks (DNN) to estimate crowd counts via densi-
ty regression. Despite their significant improvements, the
regression-based methods are incapable of providing the
detection of individuals in crowds. The detection-based
methods, on the other hand, have not been largely explored
in recent trends of crowd counting due to the needs for ex-
pensive bounding box annotations. In this work, we instead
propose a new deep detection network with only point su-
pervision required. It can simultaneously detect the size
and location of human heads and count them in crowds.
We first mine useful person size information from point-level
annotations and initialize the pseudo ground truth bounding
boxes. An online updating scheme is introduced to refine
the pseudo ground truth during training; while a locally-
constrained regression loss is designed to provide addition-
al constraints on the size of the predicted boxes in a local
neighborhood. In the end, we propose a curriculum learn-
ing strategy to train the network from images of relative-
ly accurate and easy pseudo ground truth first. Extensive
experiments are conducted in both detection and counting
tasks on several standard benchmarks, e.g. ShanghaiTech,
UCF CC 50, WiderFace, and TRANCOS datasets, and the
results show the superiority of our method over the state-of-
the-art.

1. Introduction
Counting people in crowded scenes is a crucial com-

ponent for a wide range of applications including video
surveillance, safety monitoring, and behavior modeling. It
is a highly challenging task in dense crowds due to heavy
occlusions, perspective distortions, scale variations and
varying density of people. Modern regression-based meth-
ods [27, 49, 41, 25, 22, 20, 39] cast the problem as regress-
ing a density distribution map whose integral over the map
gives the people count within that image (see Fig 1: Left).
Owing to the advent of deep neural networks (DNN) [17],
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Figure 1: Comparison of our PSDDN with representative
regression- and detection-based crowd counting methods regard-
ing their annotation costs for input and their output information.

remarkable progress has been achieved in these methods.
They do not require annotating the bounding boxes but only
the points of person heads at training, which reduces the an-
notation cost. Yet, as a consequence, they can not provide
the detection of persons at testing, neither.

The detection-based methods, which cast the problem as
detecting each individuals in the crowds (see Fig 1: Right),
on the other hand, have not been largely explored in re-
cent trends due to the lack of bounding box annotation-
s. Liu et al. [22] have tried to manually annotate on par-
tial of the bounding boxes in ShanghaiTech PartB (SHB)
dataset [49] and train a fully-supervised Faster R-CNN [32].
They combine the detection result with regression result for
crowd counting. Notwithstanding their efforts and obtained
improvements, they did not report results on datasets like
SHA [49] and UCF CC 50 [13], which have crowds on av-
erage five and ten times denser than that of SHB.

Annotating the bounding boxes of persons for training
images can be a great challenge in crowd counting dataset-
s. Meanwhile, knowing the person size and locations in
a crowd at test stage is also very important; for example,
in video surveilance, it enables person recognition [37],
tracking [33], and re-identification [21]. Recently, some re-
searchers [18, 14] starts to work on this issue with point
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supervision by employing segmentation frameworks [18] or
regressing the localization maps [14] to simultaneously lo-
calize the persons and predict the crowd counts. Because
they only use point-level annotations, they simply focus on
localizing persons in the crowds, but do not consider pre-
dicting the proper size.

To be able to predict the proper size and locations of
persons and in the meantime bypass the need for expensive
bounding box annotations, we introduce a new deep detec-
tion network using only point-level annotations on person
heads (see Fig. 1: Middle). Although the real head size
is not annotated, the intuition of our work is based on the
observations that i) when two persons are close enough,
their head distance indeed reflects their head size (similar
to [49]); ii) due to the perspective distortion, person head-
s in the same horizontal line usually have similar size and
gradually become smaller in the remote (top) area of the
image. Both observations are commonly occurred in crowd
counting scenarios. They inspire us to mine useful person
size information from their head distances, and generalize
a reliable point-supervised person detector with the help of
head point annotations and size correlations in local areas.

To summarize, our work tries to tackle a very challeng-
ing yet meaningful task which is never handled by before;
we propose a point-supervised deep detection network (PS-
DDN) for crowd counting which takes in cheap point-level
annotations on person heads at training stage and produces
out elaborate bounding box information on person heads at
test stage. The contribution is three-fold:
• We propose a novel online pseudo ground truth updat-

ing scheme which initializes the pseudo ground truth
bounding boxes from point-level annotations (Fig. 1:
Middle top) and iteratively updates them during train-
ing (Fig. 1: Middle bottom). The initialization is based
on the nearest neighbor head distances.
• We introduce a novel locally-constrained regression

loss in the point-supervised setting which encourages
the predicted boxes in a local band area to have the
similar size. The loss function is inspired from the
perspective distortion impact on the person size in an
image [6, 47, 39];
• We propose a curriculum learning strategy [3] to feed

the network with training images of relatively accurate
and easy pseudo ground truth first. The image difficul-
ty is defined over the distribution of the nearest neigh-
bor head distances within each image.

In extensive experiments, we show that (1) PSDDN per-
forms close to those regression-based methods in crowd
counting task on ShanghaiTech and UCF CC 50 datasets;
outperforms the state-of-the-arts by integrating with them.
(2) In the mean time it produces very competitive result-
s in person detection task on ShanghaiTech, UCF CC 50,
and WiderFace [46] datasets. (3) We also evaluate PSDDN

on the vehicle counting dataset TRANCOS [10] to show its
generalizability for other detection and counting tasks.

2. Related works
We present a survey of related works in three aspects:

(1) detection-based crowd counting; (2) regression-based
crowd counting; and (3) point-supervision.

2.1. Detection-based crowd counting

Traditional detection-based methods often employ mo-
tion and appearance cues in video surveillance to detec-
t each individual in a crowd [43, 5, 29]. They are suf-
fered from heavy occlusions among people. Recent meth-
ods in the deep fashion learn person detectors relying on
exhaustive bounding box annotations in the training im-
ages [42, 22]. For instance, [22] have manually annotated
the bounding boxes on partial of SHB and trained a Faster
R-CNN [32] for crowd counting. The annotation cost can
be very expensive and sometimes impractical in very dense
crowds. Our work instead uses only the point-level annota-
tions to learn the detection model.

There are some other works particularly focusing on s-
mall object detection, e.g. faces [12, 26, 1]. [12] proposed
a face detection method based on the proposal network [32]
while [26] proposed to detect and localize faces in a sin-
gle stage detector like SSD [23]. The face crowds tackled
in these works are however way less denser than those in
crowd counting works; moreover, these works are typically
trained with bounding box annotations.

2.2. Regression-based crowd counting

Earlier regression-based methods regress a scalar value
(people count) of a crowd [6, 7, 13] while recent methods
instead regress a density map of a crowd; crowd count is
obtained by integrating over the density map. Due to the
use of strong DNN features, remarkable progress has been
achieved in recent methods [49, 35, 41, 25, 22, 24, 31, 14,
39]. More specifically, [41] designed a contextual pyramid
DNN system. It consists of both a local and global context
estimator to perform patch-based density estimation. [24]
leveraged additional unlabeled data from Google Images to
learn a multi-task framework combining both counting in-
formation in the labeled data and ranking information in the
unlabeled data. [31] proposed an iterative crowd count-
ing network which first produces the low-resolution den-
sity map and then feeds it as input to further generate the
high-resolution density map. Despite the significant im-
provements achieved in these density regression methods,
they are usually not capable of predicting the exact person
location and size in the crowds.

[22, 18, 14] are three most similar works to ours. [22]
designed a so-called DecideNet to estimate the crowd den-
sity by generating detection- and regression-based density



maps separately; the final crowd count is obtained with the
guidance of an attention module. [14] introduced a new
composition loss to regress both the density and localiza-
tion maps together, such that each head center can be di-
rectly inferred from the localization map. [18] employed
the hourglass segmentation network [34] to segment the ob-
ject blobs in each image for crowd counting; instead of
using per-pixel segmentation labels, they use only point-
level annotations [2]. Our work is similar to [22] in the
sense we both train a detection network for crowd counting;
while [22] trained a fully-supervised detector using bound-
ing box annotations, we train a weakly-supervised detector
using only point-level annotations. Our work is also similar
to [14, 18] where we all use point-level annotations; unlike
our method, [14, 18] simply focus on person localization
whereas we aim to predict both the localization and proper
size of the person. Apart from all above, we also notice that
we firstly evaluate the detection results on the dense crowd
counting datasets ShanghaiTech and UCF CC 50.

2.3. Point supervision

Point supervision scheme has also been widely used in
human pose estimation to annotate key-points of human
body parts [16, 30, 36]; while in object detection or seg-
mentation, it has often been employed to reduce the annota-
tion time [4, 44, 45, 2, 28]. For example, Bearman et al. [2]
conducted semantic segmentation by asking the annotators
to click anywhere on a target object while Papadopoulos et
al. [28] asked the annotators to click on the four physical
points on the object for efficient object annotations. The
points can be collected either once offline [2] or in an on-
line interactive manner [4, 44, 45]. We collect the points
once and only use them at training time.

3. Method
3.1. Overview

Our model is based on the widely used anchor based de-
tection framework, such as RPN [32] and SSD [23]. The
network architecture is shown in Fig. 2 where we adopt our
backbone from ResNet-101 with four ResNet blocks (Res
B1- B4) [11]. Likewise in [12], the outputs from Res B3
and Res B4 are taken to connect with two detection layers
with different scales of anchors, respectively. The detection
layer is a 1 x 1 convolutional layer that has the output of
N×N×T×(1+4), whereN is the output length of feature
maps and T is the anchor set size (25 in our work). The as-
pect ratios of the predefined anchors are adapted from [32]
by referring to the centroid clustering of the nearest neigh-
bor distance between person heads. For each anchor, we
predict 4 offsets relative to its coordinates and 1 score for
classification. Prediction Pred2 is up-sampled to the same
resolution with Pred1 and added together to produce the fi-

nal map Final Pred. The multi-task loss of bounding box
classification and regression is applied in the end.

We extend the framework to point-supervised crowd
counting with modules marked in bold in Fig .2: a novel on-
line ground truth (GT) updating scheme is firstly presented
which incorporates initializing pseudo GT bounding box-
es from point-level annotations and updating them during
training. Afterwards, a locally-constrained regression loss
is specifically proposed for bounding box regression with
point-supervision. In the end, we introduce a curriculum
learning strategy to train our model from images of rela-
tively accurate pseudo ground truth first.

3.2. Online ground truth updating scheme

Pseudo ground truth initialization. To train a detec-
tion network, we need to first initialize the ground truth
bounding box from head point annotations. We follow the
inspiration in [49] that the head size is indeed related to
the distance between the centers of two neighboring head-
s in crowded scenes. We use it to estimate the size of a
bounding-box g as the center distance d(g,NNg) from this
head g to its nearest neighbor NNg (see Fig. 2: red dotted
line). This makes a square bounding box; we find the corre-
sponding anchor box that has the closest size to this square
box as our initialization. We call the initialized bounding
boxes pseudo ground truth. Some examples are shown in
Fig. 1: Middle top. The estimations in dense crowds (top)
are close to the real ground truth while in sparse crowds
(bottom) are often bigger.

Pseudo ground truth updating. To train the detection net-
work, we select positive and negative samples from the pre-
defined anchors through their IoU (intersection-over-union)
with the initialized pseudo ground truth. A binary classifi-
er is trained over the selected positives and negatives so as
to score each anchor proposal. Because the pseudo ground
truth initialization is not accurate, we propose to iteratively
update them to train a reliable object detector (see Fig. 1).
More formally, let g0 denote an initialized ground truth
bounding box at certain position of an image at epoch 0.
Over the positive samples of g0, we select the highest scored
one among those whose size (the smaller value of width or
height) are smaller than d(g,NNg) to replace g0 in the next
epoch; i.e. we denote it by g1 at epoch 1. The anchor set is
densely applied on each detection layer, which guarantees
that most pseudo ground truth can be updated with suitable
predictions iteratively; if sometimes g is too small to have
positives, it will be simply ignored during training.

We notice that the classification loss we use is the same
with [8, 32]. Following [9, 40], we also apply the same
online hard mining and balance sampling strategy regarding
the positive and negative selections. Below we introduce
our locally-constrained regression loss.
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Figure 2: Network overview of PSDDN using only point-level annotations. Res B1 - B4 denotes the ResNet block adopted from ResNet-
101 [11]. Person detection is conducted on two scales after Res B3 and B4; their predictions (Pred1 and Pred2) are summed up to
produce the final prediction (Final Pred). We propose an online pseudo ground truth updating scheme which includes pseudo ground truth
initialization and updating; A novel locally-constrained regression loss which encourages the predicted boxes in a local area to have the
similar size; A curriculum learning strategy is proposed to train the network from images of relatively accurate pseudo ground truth first.

3.3. Locally-constrained regression loss

We first refer to [9] for some notations in bounding box
regression. The anchor bounding box a = (ax, ay, aw, ah)
specifies the pixel coordinates of the center of a togeth-
er with its width and height in pixels. a’s correspond-
ing ground truth g is specified in the same way: g =
(gx, gy, gw, gh). The transformation required from a to
g is parameterized as four variables dx(a), dy(a), dw(a),
dh(a). The first two specify a scale-invariant translation
of the center of a, while the second two specify log-space
translations of the width and height of a. These variables
are produced by bounding box regressor; we can use them
to transform a into a predicted ground-truth bounding box
ĝ = (ĝx, ĝy, ĝw, ĝh):

ĝx = aw · dx(a) + ax, ĝy = ah · dy(a) + ay

ĝw = aw · exp(dw(a)), ĝh = ah · exp(dh(a))
(1)

The target is to minimize the difference between g and ĝ.

The ground truth g in our framework is a pseudo ground
truth: the center coordinates gx, gy are accurate but gw,
gh are not. Based on this, we can not employ the origi-
nal bounding box regression loss but instead we propose a
locally-constrained regression loss.

We first define a loss function lxy regarding the center
distance between g and ĝ:

lxy = (gx− ĝx)2 + (gy − ĝy)2. (2)

With respect to the loss function on width and height, it is
not realistic to directly compare between g and ĝ. We rely
on the observation (Observ) that in a crowd image bound-
ing boxes of persons along the same horizontal line should

have similar size. This is due to the commonly occurred
perspective distortions in crowd images: perspective values
are equal in the same row, and decreased from the bottom
to top of the image [6, 47, 39]. As long as the camera is
not severely rotated and the ground in the captured scene
is mostly flat, the above observation should apply. Hence,
we propose to penalize the predicted bounding boxes ĝ if its
width and height clearly violate the Observ.

Formally, denoting by gij = (gxij , gyij , gwij , ghij) the
pseudo ground truth at position ij on the feature map, we
first compute the mean and standard deviation of the widths
(heights) of all the bounding boxes within a narrow band
area (row: i−1 : i+ 1; column: 1 : W ) on the feature map,
W is the feature map width. We use Gi to denote the set of
ground truth head positions within the narrow band related
to i. The corresponding statistics are:

µwi =
1

|Gi|
∑

mn∈Gi

gwmn

σwi =

√
1

|Gi|
∑

mn∈Gi

(gwmn − µwi)2,

(3)

where |Gi| signifies the cardinality of the set. µhi and σhi
can be obtained in the same way. We adopt a three-sigma
rule: if the predicted bounding box width ĝwij is larger than
µwi+3σwi or smaller than µwi−3σwi, it will be penalized;
otherwise not. The loss function lwij regarding the width
of bounding box ĝij is thus defined as:

lwij =


(ĝwij − (µwi + 3σwi))

2 ĝwij > µwi + 3σwi

((µwi − 3σwi)− ĝwij)
2 ĝwij < µwi − 3σwi

0 otherwise
(4)



lhij can be obtained in a similar way. We do not require
a restrict compliance with the Observ in a local area, but
instead design the narrow band and three-sigma rule for the
tolerance of head size variation among individuals.

The overall bounding box regression loss Lreg is:

Lreg =
∑
ij∈G

l̃xyij + l̃wij + l̃hij , (5)

where G denotes the set of ground truth head points in one
image. We add a tilde to each subloss symbol to signify
that in real implementation the center coordinates, widths
and heights of g and ĝ are normalized in a way related to
the anchor box a following the Eq. 6-9 in [8].

3.4. Curriculum learning

Referring to Sec. 3.2: in very sparse crowds, the initial-
ized pseudo ground truth are often inaccurate and much big-
ger than the real ground truth; on the other hand, in very
dense crowds, the initializations are often too small and
hard to be detected. Both cases are likely to corrupt the
model and result in bad detection. Instead of training the
model on the entire set once, we adopt a curriculum learn-
ing strategy [3, 38, 48] to train the model from images of
relatively accurate and easy pseudo ground truth first.

Each pseudo ground truth g is initialized with size
d(g,NNg) (Sec. 3.2). In a typical crowd counting dataset,
very big or small boxes are only a small portion, most box-
es are of medium/medium-small size, which are relatively
more accurate and easier to learn. The mean µ and stan-
dard deviation σ of d(g,NNg) can be computed over the
entire training set. We therefore employ a Gaussian func-
tion Φ(dg|µ, σ) to produce scores for pseudo ground truth
bounding boxes, such that the medium-sized boxes are in
general assigned with big scores. The mean score within an
image is given by 1

|G|
∑

g∈G Φ(dg|µ, σ), where G denotes
the bounding box set in the image. We define the training
difficulty TL for an image as

TL = 1− 1

|G|
∑
g∈G

Φ(dg|µ, σ) (6)

If an image contains mostly medium-sized bounding boxes,
its difficulty will be small; otherwise, big.

Having the definition of image difficulty, we can split
the training set I into Z folds I1, I2, .., IZ accordingly.
Likewise in [38, 48], we start by running PSDDN on the
first fold I1 with images containing mostly medium-sized
bounding boxes. Training on this fold will lead to a rea-
sonable detection model. After a couple of epochs running
PSDDN on I1, the process moves on to the second fold I2,
adding all its images into the current working set I1 ∪ I2
and running PSDDN again. The process will iteratively
move on to the final fold IZ and run PSDDN on the join-
t set I1 ∪ I2 ∪ ... ∪ IZ . By the time it reaches IZ with

images containing mostly super small/big bounding boxes,
the model will already be very good and will do a much bet-
ter job than training all the samples together from the very
beginning. Z is empirically chosen as 3 in our experiment.

4. Experiments

We first introduce two crowd counting datasets and one
face detection dataset; a vehicle counting dataset is also in-
troduced to show the generalizability of our method. After-
wards, we evaluate our method on these datasets. We offer
more results in the supplementary material.

4.1. Datasets

ShanghaiTech [49]. It consists of 1,198 annotated images
with a total of 330,165 people with head center annotation-
s. This dataset is split into two parts: SHA and SHB. The
crowd images are sparser in SHB compared to SHA: the av-
erage crowd counts are 123.6 and 501.4, respectively. Fol-
lowing [49], we use 300 images for training and 182 images
for testing in SHA; 400 images for training and 316 images
for testing in SHB.
UCF CC 50 [13]. It has 50 images with 63,974 head cen-
ter annotations in total. The head counts range between 94
and 4,543 per image. The small dataset size and large vari-
ance make it a very challenging counting dataset. We call
it UCF for short. Following [13], we perform 5-fold cross
validations to report the average test performance.
WiderFace [46]. It is one of the most challenging face
datasets due to the wide variety of face scales and occlu-
sion. It contains 32,203 images with 393,703 bounding-box
annotated faces. The average annotated faces per image are
12.2. 40% of the data are used as training, another 10%
form the validation set and the rest are the test set. The val-
idation and test sets are divided into “easy”, “medium”, and
“hard” subsets. Test set evaluation has to be conducted by
the paper authors. For convenience, we train all models on
the train set and evaluate only on the validation set.
TRANCOS [10]. It is a public traffic dataset containing
1244 images of different congested traffic scenes captured
by surveillance cameras with 46,796 annotated vehicles.
The regions of interest (ROI) are provided for evaluation.

4.2. Implementation details

To augment the training set, we randomly re-scale the
input image by 0.5X, 1X, 1.5X, and 2X (four scales) and
crop 500*500 image region out of the re-scaled output as
training samples. Testing is also conducted with four scales
of input and combined together. We set the learning rate as
10−4, with weight decay 0.0005 and momentum 0.9. Given
the pseudo ground-truth and anchor bounding boxes dur-
ing training, we decide positive samples to be those where
IoU overlap exceeds 70%, and negative samples to be those



where the overlap is below 30%. We use a batch size of
12 images. In general, we train models for 50 epochs and
select the best-performing epoch on the validation set.

4.3. Evaluation protocol

We evaluate both the person detection and counting per-
formance. For the counting performance, we adopt the
commonly used mean absolute error (MAE) and mean
square error (MSE) [35, 41, 22] to measure the difference
between the counts of ground truth and estimation.

Regarding the detection performance, in the WiderFace
dataset, bounding box annotations are available for each
face; a good detection ĝ is therefore judged by the IoU
overlap between the ground truth g and detected bound-
ing box ĝ, i.e. IoU(g, ĝ) > 0.5. In the ShanghaiTech
and UCF CC 50 datasets, we do not have the annotations
of bounding boxes but only head centers. We define a good
detection of ĝ based on two criteria:

• the center distance between the ground truth g and de-
tected ĝ is smaller than a constant c.

• the width or height of ĝ is smaller than r ∗ d(g,NNg),
where r is a constant.

c is set to 20 (pixels) by default. As for r, there does not ex-
ist an exact selection of it since the real ground truth bound-
ing boxes are not available. In dense crowds where persons
are very close to each other or even occluded, r could be a
bit bigger than 1 to allow a complete detection around each
head; while in sparse crowds, it is the opposite that r should
be smaller than 1. Building upon this, we choose r by de-
fault as 0.8 for SHB and 1.2 for SHA and UCF. Different c
and r will be evaluated in later sessions.

We compute the precision and recall by ranking our de-
tected bounding boxes (good ones) according to their confi-
dence scores. Average precision (AP) is computed eventu-
ally over the entire dataset.

4.4. Counting

ShanghaiTech We first present an ablation study of PS-
DDN and then compare it with state-of-the-art.

Ablation study. We present several variants (Pv0-Pv3) of
PSDDN by gradually adding the proposed elements into the
network. Referring to Sec. 3, we denote by Pv0 the mod-
el trained in a fully-supervised way using the fixed pseudo
ground truth initialization and classic bounding-box regres-
sion as in [32]; Pv1: the pseudo ground truth in Pv0 is it-
eratively updated; Pv2: the classic bounding box regression
in Pv1 is upgraded to our new way; Pv3 (PSDDN): the cur-
riculum learning strategy is adopted in Pv2.

The result is presented in Table 1 on both SHA and
SHB. We take SHA as an example: the MAE for Pv0 s-
tarts from 168.6; it decreases to 104.7 for Pv1 and 89.8 for

Dataset SHA SHB
Measures MAE MSE MAE MSE

Pv0 168.6 268.3 69.8 98.1
Pv1 104.7 193.8 41.7 66.6
Pv2 89.8 169.5 19.1 42.4

Pv3(PSDDN) 85.4 159.2 16.1 27.9
PSDDN + [20] 65.9 112.3 9.1 14.2
Li et al. [20] 68.2 115.0 10.6 16.0

Ranjan et al. [31] 68.5 116.2 10.7 16.0
Liu et al. [24] 73.6 112.0 13.7 21.4
Liu et al. [22] - - 20.7 29.4
DetNet in [22] - - 44.9 73.2

Sindagi et al. [41] 73.6 106.4 20.1 30.1
Sam et al. [35] 90.4 135.0 21.6 33.4

Table 1: Crowd counting: ablation study of PSDDN (Pv0-Pv3 de-
note different variants of PSDDN) and its comparison with state-
of-the-art on ShanghaiTech dataset.

Pv2, respectively; finally, it reaches the lowest MAE 85.4
for Pv3, which is the full version of PSDDN; in the mean-
time, the MSE also significantly decreases from 268.3 of
Pv0 to 159.2 of Pv3. We notice that the same observation
goes with SHB as well. The result shows that each com-
ponent of PSDDN provides a clear benefit in the overall
system.

Comparison with state-of-the-art. We compare our work
with prior arts [20, 31, 24, 22, 41, 35]. It can be seen that
our detection-based method PSDDN already performs close
to recent density-based methods. Furthermore, by comb-
ing our PSDDN result with [20] using the attention module
in [22] we show that the obtained result outperforms the
state-of-the-art. For instance, on SHA, PSDDN + [20] pro-
duces MAE 65.9 on SHA and 9.1 on SHB. We notice two
things: 1) we can obtain better counting results by adjust-
ing the detection confidence scores; on the contrary, we fix
it with a high value (0.8) for all datasets to guarantee that
the predictions are reliable at every local position; 2) the
regression-based methods sometimes produce bad results in
some local area of the image, which can not be reflected
in the MAE metric; there is another metric called GAME
which is able to overcome this limitation. We will discuss
later in TRANCOS dataset to show that our detection-based
method is much better in the GAME metric. We show some
examples of PSDDN in Fig. 3.

The notation DetNet in [22] denotes the counting-by-
detection result in [22], where they annotate on partial of the
bounding boxes in SHB and train a fully-supervised Faster
R-CNN detector. PSDDN clearly outperforms the DetNet
results. But we do not claim that point (weakly)-supervised
learning is normally better than fully-supervised learning.
Specifically for DetNet, they did not employ any of the data
augmentation tricks as in PSDDN. The main limitation for
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Figure 3: Examples from WiderFace, SHB, UCF, SHA, and TRANCOS datasets. The top row is test images with ground truth (bounding
boxes or dots) while the bottom row is our detection. The numbers in images denote the ground truth and estimated counts, respectively.
The green bounding boxes denote good detection while the yellows are not according to evaluation protocol.

Counting UCF
Measures MAE MSE AP

Li et al. [20] 266.1 397.5 -
Liu et al. [24] 279.6 388.9 -

Sindagi et al. [41] 295.8 320.9 -
Sam et al. [35] 318.1 439.2 -

PSDDN 359.4 514.8 0.536

Table 2: Comparison of PSDDN with state-of-the-art on
UCF dataset. MAE, MSE are reported for crowd counting
while AP is reported for person detection.

fully-supervised detection methods in crowd counting lies
in the large amount of bounding box annotations required.
It can be unrealistic in very dense crowds. Our PSDDN
instead provides an alternative way to conduct counting-by-
detection with only point supervision; it performs very well
in the evaluation of both counting and detection.

UCF CC 50 It has the densest crowds so far in crowd
counting task. We show in Table 2 (Left) that our PSDDN
can still produce competitive result: the MAE is 359.4 while
the MSE is 514.8. In the detection session, we will show
that despite the tiny heads in UCF, PSDDN is still able to
produce reasonable bounding boxes on them (Fig. 3: third
column).

4.5. Detection

ShanghaiTech In Fig. 4, we first present the precision-
recall curves of different c and r (see Sec. 4.3) on SHA
and SHB. The recall rates of different curves stop at some
points as we fix the confidence score in the detection out-
put. When we fix r, the AP improves with an increase of
c; c is chosen by default as 20 to apply a hard constraint on
the center distance between the prediction and ground truth.
On the other hand, when we fix c, the AP improves with an
increase of r. As mentioned in Sec. 4.3, the crowds in SHA

SHBSHA

Figure 4: Precision-recall curves with different c and r.

Dataset Pv0 Pv1 Pv2 Pv3 (PSDDN)
SHA 0.308 0.491 0.539 0.554
SHB 0.015 0.241 0.582 0.663

Table 3: Person detection: ablation study of PSDDN on Shang-
haiTech (SHA and SHB) dataset. AP is reported.

are much denser than in SHB, we choose by default r = 1.2
for SHA and r = 0.8 for SHB. We also present the result of
r = ∞ which only cares the head center localizations (like
in [18, 14]): we get very good AP 0.737 and 0.759 for SHA
and SHB, respectively. [18, 14] did not present localization
results in ShanghaiTech, we can not directly compare with
them. But simply localizing the head centers is not enough
for a detection task, we will further discuss in the Wider-
Face dataset where we have the real ground truth bounding
boxes for evaluation.

Following the counting experiment, we also present the
ablation study of PSDDN in detection. The result is shown
in Table 3: the AP on SHA is significantly increased from
0.308 for Pv0 to 0.554 for Pv3; the same goes for SHB,
where the AP is increased from 0.015 to 0.663 eventually.
We notice we also tried to train a Faster R-CNN [32] using
the fixed pseudo ground truth, which is as low as in Pv0.

UCF CC 50 Table 2 (Right) shows the detection perfor-
mance of PSDDN on UCF. In this dataset with very dense



Methods Annotations
WiderFace

easy medium hard

Avg. BB points(test)+ mean size 0.002 0.083 0.059
FR-CNN (ps) points(train) + mean size 0.008 0.183 0.108
FR-CNN (fs) bounding boxes (train) 0.840 0.724 0.347

PSDDN points(train) 0.605 0.605 0.396

Table 4: Person detection on WiderFace. “Annotations” denotes
different levels of annotations employed in the methods. “mean
size” refers to the mean ground truth bounding box size over the
training set while “point(test)” specifically denotes that the bound-
ing box centers are known for test. Avg. BB adds bounding boxes
at each test point using the mean size. FR-CNN: Faster R-CNN.

crowds, our method still achieves the AP of 0.536. An ex-
ample is shown in Fig. 3: third column. We refer the read-
ers to those people sitting in the upper balcony (e.g. yellow
ones): they are not annotated in ground truth but detected
by PSDDN.

WiderFace WiderFace is a face detection dataset, its
crowd density is less denser than that in a typical crowd
counting dataset; we report results in Table 4 to show the
generalizability of our method. It can be seen using on-
ly point-level annotations PSDDN still manages to achieve
AP 0.605, 0.605, 0.396 on the easy, medium, and hard set.

Comparison to others. Since we have the bounding box
annotations available for both training and test in Wider-
Face, we try to compare PSDDN with [18, 14, 22]. [18, 14]
predicts either localization maps or segmentation blobs for
both object localization and crowd counting. Predicting the
exact size and shape of the object is not considered neces-
sary for crowd counting in their works, however, we argue
that it is important to object recognition and tracking. We
assume there exists another method that can correctly local-
ize every head center at test (better than any of [18, 14]),
bounding boxes are added in a post-processing way using
the mean ground truth size from the training set. It is denot-
ed as Avg.BB in Table 4. The results are very low. We notice
that we also tried to add the boxes in a similar way to our
pseudo ground truth initialization at each test point, the APs
are also very low. This demonstrates that it is not straight-
forward to add bounding boxes on top of the head point
localization results. We also compare PSDDN with Faster
R-CNN [32] using two different levels of annotations in Ta-
ble 4: FR-CNN(ps) and FR-CNN(fs). First, we use the head
point annotations together with the mean ground truth size
to initialize bounding boxes for training, it performs much
worse than our PSDDN. Next, we follow [15] to use the
manually annotated bounding box to train Faster R-CNN,
which is analogue to the DetNet in [22]. PSDDN performs
lower AP than FR-CNN(fs) on the easy and medium set but
higher AP on the hard set. We point out that, many faces
are well covered by the detection of PSDDN but not tak-

Methods GAME0 GAME1 GAME2 GAME3 AP

Victor et al. [19] 13.76 16.72 20.72 24.36 -
Onoro et al. [27] 10.99 13.75 16.09 19.32 -

Li et al. [20] 3.56 5.49 8.57 15.04 -
PSDDN 4.79 5.43 6.68 8.40 0.669

Table 5: Results on TRANCOS dataset.

en as good ones (yellow ones in Fig. 3: first column) only
because of their low IoU with the annotated ground truth.
We believe this has displayed some potential for future im-
provement.

TRANCOS We evaluate PSDDN on TRANCOS to test its
generalizability, though it is proposed for person detection
and counting. The Grid Average Absolute Error (GAME)
is used to evaluate the counting performance. We refer the
readers to [20, 10] for the definition of GAME(L) with dif-
ferent levels of L. For a specific L, GAME(L) subdivides
the image using a grid of 4L non-overlapping regions, and
the error is computed as the sum of the mean absolute er-
rors in each of these regions. When L = 0, the GAME is
equivalent to the MAE metric. We present the result of our
PSDDN in Table 5 where we obtain 4.79, 5.43, 6.68 and
8.40 for GAME0, GAME1, GAME2 and GAME3, respec-
tively. Comparing our method with the state-of-the-art, PS-
DDN outperforms the best regression-based method [20] on
GAME1, GAME2 and GAME3 and is competitive with it
on GAME0. Unsurprisingly, the GAME theory is designed
to penalize those predictions with a good MAE but a wrong
localization of the objects. Our method produces good re-
sults on both overall vehicle counting and local vehicle lo-
calization/detection. The AP result of PSDDN for detection
is 0.669 with r = 1.

5. Conclusion

In this paper we propose a point-supervised deep detec-
tion network for person detection and counting in crowds.
Pseudo ground truth bounding boxes are firstly initialized
from the head point annotations, and updated iteratively
during the training. Bounding box regression is conduct-
ed in a way to compare each predicted box with the ground
truth boxes within a local band area. A curriculum learn-
ing strategy is introduced in the end to cope with the densi-
ty variation in the training set. Thorough experiments have
been conducted on several standard benchmarks to show the
efficiency and effectiveness of PSDDN on both person de-
tection and crowd counting. Future work will be focused on
further reducing the supervision in this task.
Acknowledgments. This work was supported by NS-
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